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229. Enantioselective Synthesis of Pseudomonic Acids.
1. Synthesis of Key Intermediates

by Bernhard Schénenberger, Walter Summermatter and Camille Ganter
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Universititstrasse 16, CH-8092 Ziirich

(29.1X.82)

Summary

An enantioselective synthesis of key intermediates for the synthesis of the anti-
microbially active pseudomonic acids A (1), B (2) and C (3) is described. p-Ribose
(4) was used as starting material.

In 1971, Chain & Mellows first isolated and purified antimicrobially active
substances produced by fermentation of a strain of Pseudomonas fluorescens [1].
Meanwhile the structures of pseudomonic acids A (1), B (2) and C (3) have been
elucidated [2-6]. In spite of considerably growing interest in the synthesis of these
antibiotic substances, as reflected by several recent reports on 1 and 3 [7-12], no
approach to optically active compounds has been described so far. In addition,
it should be noted that pseudomonic acid B (2) has not yet been the target molecule
for synthetic studies at all.

In the present communication we report an enantioselective synthesis') of the
intermediate 24 and its derivatives 25-29 (Scheme 2), most suitable precursors to
the pseudomonic acids A-C (1-3). On the basis of our retrosynthetic analysis
(Scheme 1), we have chosen the readily available p-ribose (4) rather than the more
expensive L-lyxose (5), as starting material from the pool of chiral building blocks.
To assemble the molecular framework, the following main problems had to be
solved: a) introduction of an alkyl chain at C(1) of the pentose 4 to form a C-glyco-
side, b) selective protection of the hydroxyl groups at C(2) and C(3), ¢) introduction
of the second side-chain at C(4).

The known acetal 6 (prepared from D-ribose (4) under kinetic control [14]%))
on Wittig reaction with (acetylmethylidene)triphenylphosphorane in acetonitrile

ly The term EPC-synthesis (synthesis of Enantiomerically Pure Compounds) has been proposed by
Seebach & Hungerbiihler [13] for all syntheses that finally lead to enantiomerically pure products.

2y The more stable furanose acetonides formed as by-products can easily be cleaved to the starting
material 4.

0018-019X/82/7/2333-05%01.00/0 © 1982 Schweizerische Chemische Gesellschaft

81



2334 HEerveTicA CHIMICA ACTA ~ Vol.65, Fasc. 7 (1982) = Nr. 229

Scheme 1
R R?2
v
&y o Y\COQ —(CH,)g—CO,H

OH
€O, ~(CHy)g—CO2H
1
] R O
3 Y TFceH, M R2
OH HO OH
CO,R’ CO,R!
OHC o o R? °
—> o —> K Mo
R* R2 2 2
R3O0 OR? R0 OR? HO OH
1 2
a b R R
4 OH

under reflux was transformed to a mixture of the unsaturated ketones 7°) ((E)-
isomer) and 8 ((Z)-isomer), which was treated without workup with a catalytic
amount of sodium methoxide at 0° to yield the crystalline C-glycoside 9 (70% after
chromatography; m.p. 113.5-114°; [a]p= +13.8° (¢=1.45)). The latter was also

3) Al the compounds described have been characterized analytically and spectroscopically: IR.
(CHCl3): #ux in em™1; TH-NMR. (CDCl3): chemical shifts in ppm relative to TMS; [a]p(CHCl3)-
values at r.t.; m.p. are uncorrected.

The numbering of the C-atoms in compounds 7-10 and 17 follows the octulose nomenclature,
the one in 18-27 the methyl 4-(tetrahydro-2 H-pyran-2-yl)butenoate nomenclature.



HEeLvETICA CHIMICA ACTA - Vol.65, Fasc. 7 (1982) — Nr.229

CHO
H OH

H OH —»

H OH
CH,OH

OoH R’

o R?
—-I-o OH

R’ R?

7 COCH, H
8 H COCH,

CO,CHy
0,
e
HO
o}
22

]

CO,CH, CO,CH,4
OHC o
— 5
RO
%
24 R=H
25 R = (-Bu(Me),Si
OR?2 CO,CH;3
(o]
s
R'O
26 H H
27 H Ac

2335



2336 HELVETICA CHIMICA ACTA - Vol.65, Fasc. 7 (1982) — Nr. 229

characterized as its triol 10*) and triacetate 17. The large coupling constants of
10 Hz in the '"H-NMR. spectra of 9, 10 and 17 between H—C (4) and H—C (5) proofs
the p-configuration of the newly introduced Cs-side chain at C(4). By a further
Wittig reaction of 9 with (methoxycarbonylmethylidene)triphenylphosphorane in
acetonitrile under reflux followed by chromatography, a 3:2 mixture of the dia-
stereomeric a. f-unsaturated esters 18 and 19 was obtained?).

The desired (E)-isomer 19 [m.p. 110.5-111.5%; [a]p=+22.1° (¢=0.89). - IR.:
1711, 1648. - 'H-NMR.: 222 (d J(2,H;C—-C(3))=13, Hy;C-C(3)); 5.76 (m,
H—C(2))] could easily be isolated from the mixture by crystallization. The mother
liquor which contained mainly the (Z)-isomer 18 [[a|p= +0.9° (c=1.3). - IR.: 1697,
1643, - 'TH-NMR.: 1.96 (d, J(2,H;C—C(3))=1.5, H;C—C(3)); 5.78 (m, H-C(2))]
was evaporated to dryness. The residue was dissolved in acetonitrile/acetone and
the solution irradiated in a pyrex vessel with the light of a Hg medium-pressure

4y The triol 10 can also be prepared in good yields from p-ribose (4) by the sequence shown in
Scheme 3. Wittig reaction of the tri-O-benzyl-ribose 11 with (ethoxycarbonylmethylidene)triphenyl-
phosphorane led quantitatively to an approximately 1:1 mixture of 12 ((£)-isomer) and 13 ((Z)-
isomer), which on treatment with NaOEt/EtOH cyclized to the C-glycoside 14 (85%). Basic hydro-
lysis (— 15, 90%), reaction with MeLi (— 16, 50% ) and finally hydrogenolysis gave the triol 10.
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) The full side-chain can also be introduced by a single Wiig reaction. Hence, treatment of 11 with

the ylide from (£)-3-methoxycarbonyl-(2-methylallyl)triphenylphosphonium bromide [15] followed
by cyclization under basic conditions gave a mixture of the two isomeric C-glycosides 20 and 21.
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lamp. From the equilibrium mixture a further crop of 19 was collected by crystal-
lization (total yield after these two operations: 80%). Treatment of 19 in 2,2-di-
methoxypropane with a catalytic amount of p-toluenesulfonic acid [16] quantita-
tively gave a separable mixture (approx. 1:1) of the two acetonides 19 and 22. The
isomer 22 was oxidized applying the method of Pfitzner & Moffat [17] using DM SO/
Ac,0 to the corresponding ketone 23 [95%; [a]lp= + 16.8° (c=0.86). - IR.: 1742,
1712, 1650. - 'H-NMR.: 4.03 and 4.30 (4B-system, J(gem)=18, 2 H—C(6")].
Subsequent regio- and stereoselective aldol condensation with the Li-salt of ethyl-
idenecyclohexylamine [18] [19] in THF led to the target intermediate 24 [IR.:
3700-3250, 3570, 2740, 1717, 1648. - 'H-NMR.: 9.85 (dxd, J=3.5, J=25,
H—C=0)], which either could be chromatographed (60%) or be trapped as the
O-silylated compound 25 by directly adding 2 equiv. of z-butyldimethylsilyl tri-
fluoromethanesulfonate. Reduction of 24 with NaBH, (—diol 26) followed by
selective monoacetylation of the primary hydroxyl group yielded 27 with a free
tertiary hydroxyl group at C(5’). To confirm the assigned configuration of the
C-side chain at C(5’), 27 was subjected to equilibration. Indeed the isomeric
acetonide 28 was formed and characterized as its diacetate 29 [[a]p= +12.0°
(c=0.55). - "H-NMR.: 435 (d, J(3".4")=3.5, H-C(4")); 4.80 (dx d, J(2°.3")=10,
J(3,4)=3.5, H-C(3))]

The compounds 23-29 offer most attractive opportunities for the synthesis of
the pseudomonic acids A (1), B (2) and C (3) in their optically active forms, particu-
larly of B (2) with an additional hydroxyl group at C(8). Furthermore the described
compounds open the possibility for the synthesis of modified analogues.
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